Pitfalls of virtual machine
introspection on modern
hardware

Tamas K. Lengyel
@tklengyel
tamas@tklengyel.com

Agenda

1. VMI intro
2. Software attacks
* Direct Kernel Structure Manipulation
* Direct Kernel Object Manipulation
3. Hardware attacks
* Translation Lookaside Buffer poisoning
* Extended Page Tables limitations
* System Management mode
4. Conclusion

Virtual Machine Introspection (VMI)

Interpret virtual hardware state
 Network, Disk, vCPU & Memory
* The semantic gap problem:
Reconstruct high-level state information from
low-level data-sources.

Bridging the semantic gap

* The guest OS is in charge of managing the
virtual hardware
- How to get the info from it?

* Install in-guest agent to query using standard
interfaces
- If OS is compromised in-guest agent can be

disabled / tampered with

- Just as vulnerable as your AntiVirus

Bridging the semantic gap

* Replicate guest OS functions externally
- In-guest code-hooks are avoided
- Requires expert knowledge on OS and
hardware behavior
- Requires debug data to understand in-
memory data-structures

* This is where the problems begin
- The weak and the strong semantic gap

Direct Kernel Object Manipulation

2004: DKOM - Mangle in-memory data-structures to

hide elements

LibVMI example:

size_t vmi_read_va(
vmi_instance_t vmi,
addr_t vaddr,
vmi_pid_t pid,

void *buf,
size_t count);

—

—

—
EX
EPROCESS % EPROCESS
S~

I

EX
EPROCESS y % EPROCESS

‘\

// This 1is interpreted by
// walking the list

Direct Kernel Structure

Manipulation

DKSM: Subverting Virtual Machine Introspection

for Fun and Profit (2010)
* Patch in-guest system to interpret structures

differently

External interpretation

Internal interpretation

typedef struct FOO
{
void* my_pointer;
unsigned long my_value;
} FOO;

typedef struct NEWFOO

{
unsigned long my_value;
void* my_pointer;

} NEWFOO;

Translation lookaside buffer (TLB)

poisoning

* Virtual to physical address

translation is expensive E/m‘;d
« Hardware managed transparent

cache of the results E@ IEE
 Separate cache for read/write

and instruction fetch (Harvard- T8

style architecture)!
* Opportunity to whack it out of sync!
« Shadow Walker / FU rootkit

TLB poisoning

Original algorithm:
Input: Splitting Page Address (addr)
Pagetable Entry for addr (pte)

invalidate_instr_tlb (pte); // flush TLB

pte = the_shadow_code_page (addr); // replace PTE in memory
mark_global (pte); // disable auto-flush
reload_instr_tlb (pte); // load it into TLB

pte = the_orig_code_page (addr); // put original entry back

TLB poisoning and virtualization

Automatically flush of the TLB on

every VMEXITNMENTRY Entry: VM VPID: x | GVA | GPA
 TLB (poisoning) is impossible
 Performance hit

Introduction of TLB tagging (VPID) in Intel Nehalem
(2008)

* 106-bit field specified in the VMCS for each vCPU

* Performance boost!

* VM TLB entries invisible to the VMM

* The problem is not (just) the split TLB

Entry: VMM || VPID:0 | VA PA

TLB poisoning with Windows / Linux

TLB poisoning uses global pages

* CR4.PGE (bit 7)

 Makes PTE’s marked as global survive context-
switches (MOV-TO-CR3)

* Great performance boost for kernel pages!

Windows 7

* Regularly flushes global pages by disabled & re-
enabling CR4.PGE

Linux

* Doesn’t touch CR4.PGE after boot

The tagged TLB in Xen

The TLB tag is assigned to the vCPU from a
global counter
asid->asid = data->next_asid++;
No flushes, just assign a new tag when needed
When 16-bit field is exhausted, flush and start
from 1
* A new tag is assigned on every MOV-TO-CR3
- The use of global pages disabled in the guest!
- The TLB needs to be primed on each context-
switch

The tagged TLB in KVM

 Tag is assigned when vCPU structure is created

- Doesn’t matter if the vCPU is activated or not
- Ran out of assignable tags?
* Disable tagging and revert to old
VMENTRY/VMEXIT TLB flushing
Priming the TLB in Linux guests on KVM is a
problem for VMI
However, the split TLB still has issues

The sTLB!

Intel Nehalem introduced second-level cache: sSTLB
The problem:
* Split-TLB relies on a custom page-fault handler
being called to re-split the TLB when it’s evicted
 With sTLB, the entry is brought back into the
1st level cache
- ..both into the iTLB & the dTLB
- Split-TLB becomes unsplit!
* Split-TLB poisoning is unreliable in VMs!

MoRE Shadow Walker

2014: The evolution of TLB splitting on x86
* Guests can’t disable the sTLB by themselves
* However, sTLB doesn’t merge entries with
conflicting PTE permissions
- 1st level PTEs can have R, R+W or R+E
permissions
- 2nd level (EPT) PTEs can have R, R+W or E
permissions!
* Reliable TLB splitting requires VMM support!

Extended Page Tables (EPT)

Speed up guest virtual to machine 1
physical address translation

|
(Process 1: GVA |
(Process 2: GVA |
Process 3: GVA |

. PT
| Process n: GVA || Lookup

1))
l | s— | s W o W

Two sets of tables
* 1st layer managed by guest OS N
* 2nd layer managed by the VMM || 7 s

| . ‘ EPT
L Virtual Machine n Lookup

Permissions can be different in the
two layers!

NANGY

Extended Page Tables (EPT)

Can be used to trace the execution and memory
accesses made by the guest

* Transparently
* 4k Page-level granularity at best
* Need to filter unrelated events!

Notable commercial examples: Ve

Bitdefender

EPT limitations

void *next:

* Only the start address and P
type of the violation is LA
recorded —

Critical area

* We don't know how much
memory is involved

 The operating system by default starts R/W
operation at the start of a variable

* But it is not enforced

* Violations in the vicinity of a watched area
need to be treated as potential hits

EPT limitations

Read/Write violation ambiguities

"An EPT violation that occurs during as a result of execution of a read-modify-
write operation sets bit 1 (data write). Whether it also sets bit O (data read) is
implementation-specific and, for a given implementation, may differ for

different kinds of read-modify-write operations."
Intel SDM

“Counter question: Why can't the hardware report true characteristics right

away?”
Jan Beulich - SuSE

“when spec says so, there is a reason but I can't tell here. :-)”
Kevin Tian - Intel

EPT limitations

Read/Write violation ambiguities

"An EPT violation that occurs during as a result of execution of a read-modify-
write operation sets bit 1 (data write). Whether it also sets bit O (data read) is
implementation-specific and, for a given implementation, may differ for
different kinds of read-modify-write operations."

Intel SDM

It is possible to siphon data using r-m-w operations
from a page that doesn’t allow reading!

Fixed in Xen 4.5

age author revision description
3 months ago Tamas K Lengyel 20500:19da4386665f ¥86/hvm: treat non-instruction fetch nested page faults also as read violations

EPT limitations

* Single EPT per guest
- Not a hardware limitation
- Could have separate EPT for each vCPU
* Tracing with multi-vCPUs
- EPT permissions need to be relaxed while one
vCPU is advanced
- Race condition
- All vCPUs need to be paused while one vCPU
is singlestepped

System Management Mode (SMM)

SMM intended for low-level services, such as:

e thermal (fan) control

e USB emulation

* hardware errata workarounds

Can be used for:

e VMI

 Anti-VMI!

Hard to take control of it on (most) Intel devices as
it is loaded by the BIOS

e Normal mode SMM is

VMENTER

triggered by
interrupts (SMI) T M L
SMM ~ VMENTER ~— % VNlIM ~ VMENTER ~— % VM
* Can be configured to e e

happen periodically

SMMEXIT

* Always returns to the - toma ke _
same execution mode
afterwards

SMM

The problem for SMM based VMI systems:

“A limitation of any SMM-based solution [...] is that
a malicious hypervisor could block SMI interrupts
on every CPU in the APIC, effectively starving the
introspection tool. For VMI, trusting the hypervisor
is not a problem, but the hardware isolation from

the hypervisor is incomplete.”
Jain et al. “SoK: Introspections on Trust and the Semantic Gap” 2014, IEEE S&P

Intel Dual-monitor mode SMM

 Available on all
CPUs with VI-x (?)

VMENTER

« SMM can become L e v —

. SMM VMM VM
an independent A ST
hyperVisor o ’éMIRESUME T

° VMCALL j.n VMX_ - - | Normal Mode

—— | Dual Monitor Mode

root!

Intel Dual-mode SMM

The VMCALL instruction can be used to instrument
the VMM
* Same way INT3 can be used to instrument a VM
* Starvation is impossible via the APIC
The SMM can enter any execution mode
* Full control over the execution flow
* Hidden VMs
The SMM can temporarily disable SMIs for a VM!
* Forced execution

Conclusion

VMI is powerful but has issues
* The strong semantic gap

Hardware support is better

 Tagged TLB is a problem

* Split-TLB requires VMM support

e EPT corner-cases need to be taken into consideration

Dual-mode SMM is un(der)-explored

